Extremal Optimization: Dynamics and Results

Stefan Boettcher

www.physics.emory.edu/faculty/boettcher/

Find at: www.physics.emory.edu/faculty/boettcher

Collaborator:

► Allon Percus (Los Alamos/Claremont Graduate U)

Funding:

NSF-DMR, Los Alamos-LDRD, Emory-URC

Find at: www.physics.emory.edu/faculty/boettcher

Extremal Optimization: Dynamics and Results

Physics of Algorithms 8-10-09

Overview:

<u>Stefan</u>

Boettcher
www.physics.emory.edu/faculty/boettcher/

Overview:

- Extremal Optimization (EO) Heuristic
 - → EO Algorithm
 - → T-EO, optimizing at the "ergodic edge"

Overview:

- Extremal Optimization (EO) Heuristic
 - → EO Algorithm
 - $\rightarrow \tau$ -EO, optimizing at the "ergodic edge"
- •Jamming Model for **τ-EO**
 - → T-EO as a Super-Cooled Process
 - → Annealed Flow Diagrams
 - \rightarrow Solution of the Jamming Model for τ_{opt}

Overview:

- Extremal Optimization (EO) Heuristic
 - → EO Algorithm
 - $\rightarrow \tau$ -EO, optimizing at the "ergodic edge"
- •Jamming Model for τ -EO
 - → T-EO as a Super-Cooled Process
 - → Annealed Flow Diagrams
 - ightharpoonup Solution of the Jamming Model for au_{opt}
- Spin Glass Ground States with τ-EO
 - → Mean-Field: Sherrington-Kirkpatrick & Bethe Lattice
 - → Dilute Edwards-Anderson in d=3,...,8

Motivated by Self-Organized Criticality

<u>Stefan</u>

<u>Boettcher</u>

- Motivated by Self-Organized Criticality
 - → Emergent Structure
 - *without tuning any Control Parameters
 - * despite (or because of) Large Fluctuations

- Motivated by Self-Organized Criticality
 - → Emergent Structure
 - *without tuning any Control Parameters
 - * despite (or because of) Large Fluctuations
- •How can we use it to optimize?

- Motivated by Self-Organized Criticality
 - → Emergent Structure
 - *without tuning any Control Parameters
 - * despite (or because of) Large Fluctuations
- •How can we use it to optimize?
 - → Extremal Driving:
 - * Select and eliminate the "bad",
 - *Replace it at random,
 - ★ Eventually, only the "good" is left!

Extremal Optimization: Dynamics and Results

Physics of Algorithms 8-10-09

"Fitness" λ for various Problems:

<u>Stefan</u>

<u>Boettcher</u>

"Fitness" \(\lambda\) for various Problems:

•Spin Glasses (eg. MAX-CUT):

$$\lambda_i = \mathbf{x}_i \sum_i J_{i,i} \, \mathbf{x}_j$$

"Fitness" \(\lambda\) for various Problems:

•Spin Glasses (eg. MAX-CUT):

$$\lambda_i = \mathbf{x}_i \sum_i J_{i,j} \, \mathbf{x}_j$$

•Partitioning (eg. MIN-CUT):

$$\lambda_i = - (\#\text{-cut edges of } x_i)$$

"Fitness" λ for various Problems:

•Spin Glasses (eg. MAX-CUT):

$$\lambda_i = \mathbf{x}_i \sum_{i} J_{i,j} \, \mathbf{x}_j$$

$$\lambda_i = - (\text{\#-cut edges of } x_i)$$

$$\lambda_i = - (\#\text{-monochrome edges of } x_i)$$

"Fitness" λ for various Problems:

•Spin Glasses (eg. MAX-CUT):

$$\lambda_i = \mathbf{x}_i \sum_{i} J_{i,j} \, x_j$$

$$\lambda_i = - (\#\text{-cut edges of } x_i)$$

$$\lambda_i = - (\#\text{-monochrome edges of } x_i)$$

<u>Stefan</u>

<u>Boettcher</u>

(1) Provide <u>initial</u> Configuration $S=(x_1,...,x_n)$,

- (1) Provide <u>initial</u> Configuration $S=(x_1,...,x_n)$,
- (2) Determine "Fitness" λ_i for each Variable x_i ,

- (1) Provide <u>initial</u> Configuration $S=(x_1,...,x_n)$,
- (2) Determine "Fitness" λ_i for each Variable x_i ,
- (3) Rank all $i = \prod (k)$ according to

$$\lambda_{\Pi(1)} \leq \lambda_{\Pi(2)} \leq \ldots \leq \lambda_{\Pi(n)}$$

- (1) Provide <u>initial</u> Configuration $S=(x_1,...,x_n)$,
- (2) Determine "Fitness" λ_i for each Variable x_i ,
- (3) Rank all $i = \prod (k)$ according to

$$\lambda_{\Pi(1)} \leq \lambda_{\Pi(2)} \leq \ldots \leq \lambda_{\Pi(n)}$$

(4) Select x_w , $w = \prod(1)$, i.e. x_w has worst Fitness!

- (1) Provide <u>initial</u> Configuration $S=(x_1,...,x_n)$,
- (2) Determine "Fitness" λ_i for each Variable x_i ,
- (3) Rank all $i = \prod (k)$ according to

$$\lambda_{\Pi(1)} \leq \lambda_{\Pi(2)} \leq \ldots \leq \lambda_{\Pi(n)}$$

- (4) Select x_w , $w = \prod(1)$, i.e. x_w has worst Fitness!
- (5) Update x_{w} unconditionally,

v.physics.emory.edu/faculty/boettcher/

- (1) Provide <u>initial</u> Configuration $S=(x_1,...,x_n)$,
- (2) Determine "Fitness" λ_i for each Variable x_i ,
 - (3) Rank all $i = \prod (k)$ according to

$$\lambda_{\Pi(1)} \leq \lambda_{\Pi(2)} \leq \ldots \leq \lambda_{\Pi(n)}$$

- (4) Select x_w , $w = \prod(1)$, i.e. x_w has worst Fitness!
- (5) Update x_{w} unconditionally,
- -(6) For t_{max} times, Repeat at (2),

- (1) Provide <u>initial</u> Configuration $S=(x_1,...,x_n)$,
- (2) Determine "Fitness" λ_i for each Variable x_i ,
 - (3) Rank all $i = \prod (k)$ according to

$$\lambda_{\Pi(1)} \leq \lambda_{\Pi(2)} \leq \ldots \leq \lambda_{\Pi(n)}$$

- (4) Select x_w , $w = \prod(1)$, i.e. x_w has worst Fitness!
- (5) Update x_{w} unconditionally,
- -(6) For t_{max} times, Repeat at (2),
- (7) Return: Best C(S) found along the way!

EO-run for Partitioning (n=500):

<u>Stefan</u>

EO-run for Partitioning (n=500):

<u>Stefan</u>

EO-run for Partitioning (n=500):

<u>Stefan</u>

Boettcher

www.physics.emory.edu/faculty/boettcher/

EO-run for Partitioning (n=500):

<u>Stefan</u>

EO-run for Partitioning (n=500):

<u>Stefan</u>

Extremal Optimization: Dynamics and Results

Physics of Algorithms 8-10-09

<u>τ-ΕΟ - Searching at the "Ergodic Edge":</u>

<u>Stefan</u>

τ-EO - Searching at the "Ergodic Edge":

For Ranks
$$\lambda_{\prod(1)} \leq ... \leq \lambda_{\prod(n)}$$
, update $i = \prod(k)$ with

τ-EO - Searching at the "Ergodic Edge":

For Ranks $\lambda_{\prod(1)} \leq ... \leq \lambda_{\prod(n)}$, update $i = \underline{\prod(k)}$ with

scale-free, power-law distribution

$$P(k) \propto k^{-1}$$

<u>τ-ΕΟ</u> - Searching at the "Ergodic Edge":

For <u>Ranks</u> $\lambda_{\prod(1)} \leq ... \leq \lambda_{\prod(n)}$, update $i = \underline{\prod(k)}$ with

<u>Stefan</u>

<u>Boettcher</u>

<u>τ-ΕΟ</u> - Searching at the "Ergodic Edge":

For Ranks $\lambda_{\prod(1)} \leq ... \leq \lambda_{\prod(n)}$, update $i = \prod(k)$ with

<u>Stefan</u>

Boettcher

www.physics.emory.edu/faculty/boettcher/

Boettcher

www.physics.emory.edu/faculty/boettcher/

Animation of τ-EO for Graph-Partitioning

Welcome to the EO Applet! (by M. Grigni)

Demo for Extremal Optimization Heuristic (see LNCS1917,447'00)

First-return time distribution $R(\Delta t)$:

Dynamics of τ-EO:

Derivation of First-return time distribution $R(\Delta t)$:

Have: Total number of updates T

Then, number of updates at rank k is:

$$n(k) = T P(k)$$

Typical lifetime of variable with rank k is:

$$\Delta t(k) \sim \frac{T}{n(k)} = \frac{1}{P(k)}$$

With $R(\Delta t)d(\Delta t) = P(k)dk$:

$$R(\Delta t) = P(k) \frac{dk}{d\Delta t} \sim -\frac{P(k)^3}{P'(k)}$$

With $P(k) \sim k^{-\tau}$:

$$R\left(\Delta t\right) \sim \Delta t^{\frac{1}{\tau}-2}$$

Stretched-exponential Autocorrelations:

<u>Stefan</u>

<u>Boettcher</u>

Stretched-exponential Autocorrelations: $C(t) \sim \exp \left[-B_{\tau} \sqrt{t}\right]$

Stretched-exponential Autocorrelations: $C(t) \sim \exp \left[-B_{\tau} \sqrt{t}\right]$

Stretched-exponential Autocorrelations: $C(t) \sim \exp \left[-B_{\tau} \sqrt{t}\right]$

$$\tau = 1.1$$

$$B_{\tau} \sim -\frac{\partial \ln C(t)}{\partial t/t}$$

$$\sim 1.6 e^{-2.17}$$

$$\tau = 3.9$$

Jamming Model for τ -EO:

Jamming Model for τ -EO

Let: Only 3 states s for each x_i ,

$$\lambda_i = -s, \quad s \in \{0, 1, 2\},$$

density of variables x_i in state s:

$$ho_s(t) = rac{1}{n} \left| \{i | \lambda_i = -s\} \right|,$$

Cost function:

$$e(t) = \sum_{s=0}^{2} s \rho_s(t),$$

Annealed Flow Equation:

$$\rho_r(t+1) = \rho_r(t) + \sum_{s=0}^2 T_{r,s}Q_s,$$

where

- $Q_s(\{\rho(t)\})$ = Prob. to update variable in state s,
- $T_{r,s}(\{\rho(t)\})$ = Flow of variables to state r, if variable in state s is updated.

Jamming Model for τ -EO

Let: Only 3 states s for each x_i ,

$$\lambda_i = -s, \quad s \in \{0, 1, 2\},$$

density of variables x_i in state s:

$$\rho_s(t) = \frac{1}{n} \left| \{ i | \lambda_i = -s \} \right|,$$

Cost function:

$$e(t) = \sum_{s=0}^{2} s \rho_s(t),$$

Annealed Flow Equation:

$$\rho_r(t+1) = \rho_r(t) + \sum_{s=0}^{2} T_{r,s} Q_s,$$

where

- $Q_s(\{\rho(t)\})$ = Prob. to update variable in state s,
- $T_{r,s}(\{\rho(t)\})$ = Flow of variables to state r, if variable in state s is updated.

Flow up

<u>Stefan</u>

Boettcher

Let: Only 3 states s for each x_i ,

$$\lambda_i = -s, \quad s \in \{0, 1, 2\},$$

density of variables x_i in state s:

$$\rho_s(t) = \frac{1}{n} \left| \{ i | \lambda_i = -s \} \right|,$$

Cost function:

$$e(t) = \sum_{s=0}^{2} s \rho_s(t),$$

Annealed Flow Equation:

$$\rho_r(t+1) = \rho_r(t) + \sum_{s=0}^{2} T_{r,s} Q_s,$$

where

- $Q_s(\{\rho(t)\})$ = Prob. to update variable in state s,
- $T_{r,s}(\{\rho(t)\})$ = Flow of variables to state r, if variable in state s is updated.

Flow up

Stefan Boettcher

Let: Only 3 states s for each x_i ,

$$\lambda_i = -s, \quad s \in \{0, 1, 2\},$$

density of variables x_i in state s:

$$\rho_s(t) = \frac{1}{n} \left| \{ i | \lambda_i = -s \} \right|,$$

Cost function:

$$e(t) = \sum_{s=0}^{2} s \rho_s(t),$$

Annealed Flow Equation:

$$\rho_r(t+1) = \rho_r(t) + \sum_{s=0}^{2} T_{r,s} Q_s,$$

where

- $Q_s(\{\rho(t)\})$ = Prob. to update variable in state s,
- $T_{r,s}(\{\rho(t)\})$ = Flow of variables to state r, if variable in state s is updated.

Flow up

Jamming Model for τ -EO

Let: Only 3 states s for each x_i ,

$$\lambda_i = -s, \quad s \in \{0, 1, 2\},$$

density of variables x_i in state s:

$$\rho_s(t) = \frac{1}{n} \left| \{ i | \lambda_i = -s \} \right|,$$

Cost function:

$$e(t) = \sum_{s=0}^{2} s \rho_s(t),$$

Annealed Flow Equation:

$$\rho_r(t+1) = \rho_r(t) + \sum_{s=0}^{2} T_{r,s} Q_s,$$

where

- $Q_s(\{\rho(t)\})$ = Prob. to update variable in state s,
- $T_{r,s}(\{\rho(t)\})$ = Flow of variables to state r, if variable in state s is updated.

Flow up

<u>Stefan</u>

Boettcher

Flow Equation for a Jam

$$\dot{\rho}_{0} = \frac{1}{n} \left[-Q_{0} + \frac{1}{2} Q_{1} \right],$$

$$\dot{\rho}_{1} = \frac{1}{n} \left[\frac{1}{2} Q_{0} - Q_{1} + (\theta - \rho_{1}) Q_{2} \right],$$

$$\dot{\rho}_{2} = \frac{1}{n} \left[\frac{1}{2} Q_{0} + \frac{1}{2} Q_{1} - (\theta - \rho_{1}) Q_{2} \right],$$

$$1 = \rho_{0} + \rho_{1} + \rho_{2}.$$

For τ -EO:

$$Q_{2} = \int_{1/n}^{\rho_{2}} dx \, \frac{\tau - 1}{n^{\tau - 1} - 1} x^{-\tau}$$

$$= \frac{1}{1 - n^{\tau - 1}} \left[\rho_{2}^{1 - \tau} - n^{\tau - 1} \right]$$

$$Q_{1} = \frac{1}{1 - n^{\tau - 1}} \left[(1 - \rho_{0})^{1 - \tau} - \rho_{2}^{1 - \tau} \right]$$

$$Q_{0} = \frac{1}{1 - n^{\tau - 1}} \left[1 - (1 - \rho_{0})^{1 - \tau} \right]$$

Flow jam

τ-EO Evolution for Jammed Flow:

Flow jam

τ-EO Evolution for Jammed Flow:

Flow jam

<u>Stefan</u>

<u>Boettcher</u>

Optimal Choice for Jammed τ-EO:

Optimal Choice for Jammed τ-EO:

Results for τ -EO:

• For Graph Bi-Partitioning:

Random Graph Bi-Partitioning

<u>Stefan</u>

<u>Boettcher</u>

• For Graph Bi-Partitioning:

Random Graph Bi-Partitioning

<u>Stefan</u>

Boettcher

• For Graph Bi-Partitioning:

Random Graph Bi-Partitioning

<u>Stefan</u>

Boettcher

• Mean-Field ($d \rightarrow \infty$) Spin Glasses:

• Mean-Field $(d \rightarrow \infty)$ Spin Glasses:

• Mean-Field $(d \rightarrow \infty)$ Spin Glasses:

<u>Stefan</u>

Boettcher

• Mean-Field ($d \rightarrow \infty$) Spin Glasses:

<u>Stefan</u>

Boettcher

www.physics.emory.edu/faculty/boettcher/

• Mean-Field $(d \rightarrow \infty)$ Spin Glasses:

• Mean-Field ($d \rightarrow \infty$) Spin Glasses:

• "Width" σ of the GS-Energy:

$$\sigma = \sqrt{\langle e_0^2 \rangle - \langle e_0 \rangle^2},$$

$$\sim A \frac{1}{N^{\rho}} + B \frac{1}{N^{\alpha}}, \qquad (\alpha > \rho),$$

$$\ln \sigma \sim -\rho \ln(N) + \ln(A) + \ln\left(1 + \frac{B}{A}N^{\rho-\alpha}\right),$$

$$-\frac{\ln \sigma}{\ln N} \sim \rho + a x + b x \exp \left[\frac{\rho - \alpha}{x}\right],$$

$$\left(x = \frac{1}{\ln N} \to 0\right).$$

• Mean-Field $(d \rightarrow \infty)$ Spin Glasses:

<u>Stefan</u>

Boettcher

www.physics.emory.edu/faculty/boettcher/

EO for 3-connected Bethe Lattice Glass w/ Replica Sym. Breaking:

Boettcher

EO for 3-connected Bethe Lattice Glass w/ Replica Sym. Breaking:

EO for 3-connected Bethe Lattice Glass w/ Replica Sym. Breaking:

EO for 3-connected Bethe Lattice Glass w/ Replica Sym. Breaking:

<u>Stefan</u>

<u>Boettcher</u>

EO for (k+1)-connected Bethe Lattice Glasses for $(k+1) \rightarrow \infty$:

EO for 3-connected Bethe Lattice Glass:

• Mean-Field $(d \rightarrow \infty)$ Spin Glasses:

Lattice Spin Glasses (at *T=0*):

Defect-Energy:

<u>Stefan</u>

<u>Boettcher</u>

Lattice Spin Glasses (at *T=0*):

Defect-Energy:

Defect-Energy:

Measure Defect Energy $\Delta E = E_0 - E'_0$

Defect-Energy:

⇒ Low Energy Excitations (like "small oscillations")

5

6

7

10

3

2

Defect-Energy:

Defect-Energy:

Before: 100 Spins

<u>Stefan</u>

Defect-Energy:

Before: 100 Spins

Defect-Energy:

⇒Low Energy Excitations of bond-diluted Lattices

Defect-Energy:

⇒Low Energy Excitations of bond-diluted Lattices

Defect-Energy: Measure "Stiffness": $\sigma(\Delta E) \sim L^{y}$

<u>Stefan</u>

<u>Defect-Energy:</u> Measure "Stiffness": $\sigma(\Delta E) \sim L^{y}$

How bond-diluted Lattices?

<u>Defect-Energy:</u> Measure "Stiffness": $\sigma(\Delta E) \sim L^{y}$

<u>Defect-Energy:</u> Measure "Stiffness": $\sigma(\Delta E) \sim L^{y}$

<u>Defect-Energy:</u> Measure "Stiffness": $\sigma(\Delta E) \sim L^{y}$

Why bond-diluted Lattices?

<u>Defect-Energy:</u> Measure "Stiffness": $\sigma(\Delta E) \sim L^{y}$

Why bond-diluted Lattices?

- →Simpler Problem
- →Larger Sizes *L*
- →Better Scaling

<u>Stefan</u>

Extremal Optimization: Dynamics and Results

Physics of Algorithms 8-10-09

Defect-Energy of diluted Lattices:

<u>Stefan</u>

Defect-Energy of diluted Lattices:

- ±J-Glasses on Lattices of size L and density p.
- Defect-Energy $\sigma(\Delta E)$ with Reduction & Heuristic (τ -EO).

Defect-Energy of diluted Lattices:

- ±J-Glasses on Lattices of size L and density p.
- Defect-Energy $\sigma(\Delta E)$ with Reduction & Heuristic (τ -EO).

Extremal Optimization: Dynamics and Results

Physics of Algorithms 8-10-09

Stiffness Exponent y for Lattice Glasses:

"Stiffness":
$$\sigma(\Delta E) \sim L^y$$

<u>Stefan</u>

"Stiffness":
$$\sigma(\Delta E) \sim L^{y}$$

"Stiffness":
$$\sigma(\Delta E) \sim L^y$$

"Stiffness":
$$\sigma(\Delta E) \sim L^y$$

"Stiffness":
$$\sigma(\Delta E) \sim L^{y}$$

"Stiffness":
$$\sigma(\Delta E) \sim L^{y}$$

"Stiffness":
$$\sigma(\Delta E) \sim L^{y}$$

"Stiffness":
$$\sigma(\Delta E) \sim L^y$$

<u>Stefan</u>

"Stiffness":
$$\sigma(\Delta E) \sim L^y$$

<u>Stefan</u>

"Stiffness":
$$\sigma(\Delta E) \sim L^y$$

<u>Stefan</u>

Extremal Optimization: Dynamics and Results

Physics of Algorithms 8-10-09

Other Evidence for $d_1=5/2$:

<u>Stefan</u>

Other Evidence for $d_1=5/2$:

•<u>From Theory:</u> (Franz, Parisi&Virasoro, J. Phys. I <u>4</u>,1657,'94) Effective Mean Field calculation near T_g , where Replica Symmetry Breaking (RSB) disappears (ie. $T_g \rightarrow 0$) for $d_l = 5/2$.

Other Evidence for $d_1=5/2$:

- •<u>From Theory:</u> (Franz, Parisi& Virasoro, J. Phys. I <u>4</u>,1657,'94) Effective Mean Field calculation near T_g , where Replica Symmetry Breaking (RSB) disappears (ie. $T_g \rightarrow 0$) for $d_l = 5/2$.
- •From Numerics:

Know:

$$T_g \approx \sqrt{2d}$$
 $(d \to \infty)$

$$T_g \approx \sqrt{2d - d_l} \qquad (d \to d_l)$$

•<u>From Theory:</u> (Franz, Parisi&Virasoro, J. Phys. I <u>4</u>,1657,'94) Effective Mean Field calculation near T_g , where Replica Symmetry Breaking (RSB) disappears (ie. $T_g \rightarrow 0$) for $d_l = 5/2$.

•From Numerics:

Know:

$$T_g pprox \sqrt{2 d}$$
 $(d
ightarrow \infty)$ وق ع

$$T_g \approx \sqrt{2d - d_l} \qquad (d \to d_l)$$

Data from:

- •MC (Ballesteros et al) for d=3,4
- •High-T Series (Klein et al) for d≥5

Stefan

<u>Stefan</u>

<u>Stefan</u>

<u>Stefan</u>

"Stiffness": $\sigma(\Delta E) \sim L^{y}$

<u>Stefan</u>

Corrections-to-Scaling in EA:

Ground State Energy:
$$E(L) \sim e_0 L^d + AL^y$$
 $(L \rightarrow \infty)$

Corrections-to-Scaling in EA:

Ground State Energy:
$$E(L)/L^d \sim e_0 + A/L^{d-y} (L \rightarrow \infty)$$

$$\omega = d-y$$

Corrections-to-Scaling in EA:

Ground State Energy: $E(L)/L^d \sim e_0 + A/L^{d-y} (L \rightarrow \infty)$

<u>Stefan</u>

Extremal Optimization: Dynamics and Results

Physics of Algorithms 8-10-09

Conclusions:

<u>Stefan</u>

Conclusions:

- •Extremal Optimization:
 - → Selection *against* extremely $Bad \Rightarrow \underline{Greedy!}$
 - → No Rejection \Rightarrow Large Fluctuations \Rightarrow No Trapping!
 - \Rightarrow Single, fixed Parameter $(\tau) \Rightarrow \underline{\text{Simple!}}$
 - → T-EO: Optimizing at the *Ergodic Edge*.
 - → <u>Problems:</u> Definition of Fitness and Sorting Ranks.

•Extremal Optimization:

- → Selection *against* extremely $Bad \Rightarrow \underline{Greedy!}$
- → No Rejection \Rightarrow Large Fluctuations \Rightarrow No Trapping!
- \Rightarrow Single, fixed Parameter $(\tau) \Rightarrow \underline{\text{Simple!}}$
- → T-EO: Optimizing at the *Ergodic Edge*.
- → <u>Problems:</u> Definition of Fitness and Sorting Ranks.

•Results:

- → Works well for Partitioning, Coloring, Spin Glasses, Satisfiability, Pattern Recognition (at least!).
- → Works poorly for TSP, Polymer Folding, ie. strongly connected problems!
- → Theory: "Jamming" Model, predicting $\tau_{opt} \rightarrow 1^+$, always remains super-cooled, not frozen!